

ÚJV Řež, a. s.

Severe accidents: definitions, parameters calculations & equipment qualification

Miroslav Kotouč Jiří Duspiva Tomáš Janda **Dept. of Severe Accidents and Thermomechanics**

Equipment Qualification in Nuclear Installations, 20-23 May 2019, UJV Rez, CZECH REPUBLIC

- 1. Definition of a severe accident (SA)
- 2. Processes in the course of a SA
- 3. Management & mitigation of SAs
- 4. Structures, systems & components (SSC) during a SA
- 5. Codes for SA analyses
- 6. Assessment of outcomes of SA analyses
- 7. Equipment qualification for SAs

2

SA definition

Severe accident

• "Accident with substantial core damage"

• Former terminology

- Design basis accidents (DBAs)
- Beyond design basis accidents (BDBAs)
 - incl. SAs
- Actual terminology (IAEA, WENRA)
 - Design basis conditions (DBCs)
 - Design extension conditions (DECs)
 - DEC-A complex sequences (w/o core melt)
 - DEC-B SAs (core melt)

Processes in the course of a SA (1)

Unmitigated SA

- Phase just after an initiating event (IE) identical to DBAs
 - initiated by e.g. loss of cooling accident (LOCA), station blackout (SBO)...
- Core degradation = consequence of the absence of core cooling
 - Cladding oxidation exothermic process, H₂ production
 - Cladding rupture release of gaseous and highly volatile fission products (FPs)
 - Loss of fuel geometry release of moderately volatile FPs
 - Fuel relocation into the lower plenum (LP) ⇒ reactor pressure vessel (RPV) ablation ⇒ RPV integrity loss ⇒ debris/molten materials (corium) release into the reactor cavity
 - High-pressure melt ejection (HPME) aerosols dispersion into the containment (CTMT) volume
 - Low-pressure melt ejection "slow" release of debris/corium into the pit
 - Molten core-concrete interaction (MCCI) release of nonvolatile FPs, H₂ production

Processes in the course of a SA (2)

• Challenges for the CTMT

- Pressurization steam, H₂ and non-condensable gases
- Over-heating
- Radiation gaseous FPs, aerosols & vapors

Management & mitigation of SAs

• SA management (SAM)

- Coolant injection into the core
- Corium confinement:
 - In-vessel melt retention (IVMR)
 - Ex-vessel corium cooling
- Long-term CTMT heat removal
- Over-pressurization mitigation measures
- FPs confinement

- SSCs intended for the above-mentioned functions:
 - Need of qualification?
 - To which conditions?

- **Question?** which SSCs are being used in the course of SAs? For:
 - Unmitigated SAs vs.
 - SAs with SAM application
- Answer! determined by the SA evolution
 - A *bunch* of scenarios must be analyzed
- SSCs used in the course of SAs:
 - **1.** Systems for physical parameters/plant state measurement
 - 2. Components for SA mitigation
 - Primary circuit (PC) depressurization measures
 - Systems for in-core coolant injection
 - Passive autocatalytic recombiners (PARs)
 - Core-catcher
 - Valves
 - Mobile devices

SSCs during a SA

- **1.** Systems for physical parameters/plant state measurement
 - Core exit temperature (CET) used for determination of the entrance into SA management guidelines (SAMGs)
 - Low range; will be destroyed after core degradation onset; no qualification
 - PC loops temperatures used for determination of the entrance into SAMGs
 - Low range; will be destroyed after core degradation onset; no qualification
 - Liquid level in spent fuel pool (SFP), steam generators (SGs), CTMT sump
 - Possibility of clogging ⇒ measurement devices need to be qualified
 - Pressure in the CTMT qualified for DBCs, wider range in SAs
 - H₂ concentration in CTMT qualified for DBCs, wider range in SAs; low O₂ conc.!!!
 - Dose rate in CTMT
 - Data acquired during normal operation, in SAs used alternatively if CET unavailable
 - Qualification to higher ranges of dose rates (to capture EOPs ⇒ SAMGs)
 - Radioactivity (RA) release into environment
 - Outside CTMT; no qualification
- Generally: qualification needed for cables and those devices which help to identify whether a certain system's operation is hampered by clogging

SSCs during a SA

2. Components for SA mitigation

- PC depressurization PORV, SRV
 - Periodical operation, very hot gases carrying aerosols
- Systems for in-core coolant injection
 - Localized outside the CTMT, however, water intake from the sump ⇒ liquid is likely to contain much aerosols
- PARs
 - Designed for SAs
- Core-catcher
 - Designed for SAs
- Valves
 - Steam dump to atmosphere valve
- Mobile devices
 - Located outside the CTMT

• Generally: qualification needed in order to be able to carry out the required functions during SAs

Codes for SA analyses

• Integral codes

- IE ⇒ SA progression ⇒ FPs release into environment (source term; ST)
- "Lumped parameter" approach
- FPs behavior (release from fuel \Rightarrow transport in circuits \Rightarrow behavior in CTMT \Rightarrow ST)
- FPs grouping into "classes"
 - Similar chemical behavior

• Main integral codes:

- MELCOR
 - Sandia National Laboratories
 - for US Nuclear Regulatory Commission
- ASTEC
 - IRSN+GRS
- MAAP5
 - for EPRI
- SOCRAT
 - IBRAE

Class	Class	Chemical Group	Representative	Member Elements
	Name			
1	XE	Noble Gas	Xe	He, Ne, Ar, Kr, Xe, Rn, H, N
2	CS	Alkali Metals	Cs	Li, Na, K, Rb, Cs, Fr, Cu
3	BA	Alkaline Earths	Ва	Be, Mg, Ca, Sr, Ba, Ra, Es, Fm
4	12	Halogens	I ₂	F, Cl, Br, I, At
5	TE	Chalcogens	Те	O, S, Se, Te, Po
6	RU	Platinoids	Ru	Ru, Rh, Pd, Re, Os, Ir, Pt, Au, Ni
7	MO	Early Transition Elements	Мо	V, Cr, Fe, Co, Mn, Nb, Mo, Tc, Ta, W
8	CE	Tetravalent	Ce	Ti, Zr, Hf, Ce, Th, Pa, Np, Pu, C
9	LA	Trivalents	La	Al, Sc, Y, La, Ac, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Am, Cm, Bk, Cf
10	UO2	Uranium	UO ₂	U
11	CD	More Volatile Main Group	Cd	Cd, Hg, Zn, As, Sb, Pb, Tl, Bi
12	AG	Less Volatile Main Group	Ag	Ga, Ge, In, Sn, Ag
13	BO2	Boron	BO ₂	B, Si, P
16	CSI	Cesium iodide	Csl	Csl
17	CSM	Cesium Molybdate	CsM ¹	CsM ¹

Codes for SA analyses

- Main output variables from SA computational analyses in relation with EQ – temporal evolution of:
 - p in CTMT ۲
 - T in CTMT
 - Gas composition entering the CTMT or environment
 - Humidity in the CTMT
 - Surface T of solid structures
 - Occurrence of deflagrations
 - **FPs distribution**

Still missing as an outcome from integral SA analyses:

- Dose rates acting on SSCs
- Recent analyses at UJV Rez:
 - MELCOR analysis \Rightarrow FPs distribution in the reactor hall of VVER-1000 reactor \bullet CTMT \Rightarrow MCNP5 evaluation of dose rate at 2 spots (RA measurement probes)
 - for a SA in open reactor & SFP (no CET measurement): EOPs ⇒ SAMGs
 - MELCOR analysis ⇒ FPs distribution in the reactor hall of VVER-1000 reactor CTMT \Rightarrow MAVRIC/ORIGEN-S evaluation

- Typical temporal evolution of crucial parameters for an unmitigated SA
 example:
 - VVER-1000/320 (Temelin NPP)
 - IE: large break LOCA + SBO
 - CTMT failure by over-pressurization not considered
 - MCCI ongoing
 - PARs taken into account

(2)

• CTMT pressure

• CTMT atmosphere temperature, dew point temperature

• Concentration of steam, H₂, O₂ and N₂ in the CTMT atmosphere

Time [day]

• Relative humidity in the CTMT atmosphere

• Surface temperature of a solid structure in the reactor hall

Equipment qualification for SAs

- 2014: project for EQ for both Czech NPPs
 - 4x VVER-440/213 Dukovany NPP
 - 2x VVER-1000/320 Temelin NPP)
- Identified were:
 - Equipment to be qualified
 - Relevant SA scenarios
 - Readings of maxima of decisive parameters, such as:
 - Atmosphere & component surface temperature
 - Pressure
 - Humidity
 - Water level
 - Hydrogen deflagration identification
 - RNs distribution (vapors, aerosols and gases)
 - in the air
 - in sumps and
 - settled on structures
- For SAs, crucial is the dose rate evaluation
 - up to several days of duration
- ¹⁷ new methodology under development, using the code SCALE/MAVRIC seq.

Thank You for Your Attention!

UJV GROUP

