Severe accidents: definitions, parameters calculations & equipment qualification

Miroslav Kotouč
Jiří Duspiva
Tomáš Janda
Dept. of Severe Accidents and Thermomechanics

Equipment Qualification in Nuclear Installations, 20-23 May 2019, UJV Rez, CZECH REPUBLIC
Outline

1. Definition of a severe accident (SA)
2. Processes in the course of a SA
3. Management & mitigation of SAs
4. Structures, systems & components (SSC) during a SA
5. Codes for SA analyses
6. Assessment of outcomes of SA analyses
7. Equipment qualification for SAs
SA definition

- **Severe accident**
 - “Accident with substantial core damage”

- **Former terminology**
 - Design basis accidents (DBAs)
 - Beyond design basis accidents (BDBAs)
 - incl. SAs

- **Actual terminology (IAEA, WENRA)**
 - Design basis conditions (DBCs)
 - Design extension conditions (DECs)
 - DEC-A – complex sequences (w/o core melt)
 - DEC-B – SAs (core melt)
Processes in the course of a SA (1)

• **Unmitigated SA**
 - Phase just after an initiating event (IE) – identical to DBAs
 - initiated by e.g. loss of cooling accident (LOCA), station black-out (SBO)...
 - Core degradation = consequence of the absence of core cooling
 - Cladding oxidation – exothermic process, \(\text{H}_2 \) production
 - Cladding rupture – release of gaseous and highly volatile fission products (FPs)
 - Loss of fuel geometry – release of moderately volatile FPs
 - Fuel relocation into the lower plenum (LP) \(\Rightarrow \) reactor pressure vessel (RPV) ablation \(\Rightarrow \) RPV integrity loss \(\Rightarrow \) debris/molten materials (corium) release into the reactor cavity
 - High-pressure melt ejection (HPME) – aerosols dispersion into the containment (CTMT) volume
 - Low-pressure melt ejection – “slow” release of debris/corium into the pit
 - Molten core-concrete interaction (MCCI) – release of non-volatile FPs, \(\text{H}_2 \) production
Processes in the course of a SA (2)

- **Challenges for the CTMT**
 - Pressurization – steam, H₂ and non-condensable gases
 - Over-heating
 - Radiation – gaseous FPs, aerosols & vapors
Management & mitigation of SAs

- **SA management (SAM)**
 - Coolant injection into the core
 - Corium confinement:
 - In-vessel melt retention (IVMR)
 - Ex-vessel corium cooling
 - Long-term CTMT heat removal
 - Over-pressurization mitigation measures
 - FPs confinement

- **SSCs intended for the above-mentioned functions:**
 - Need of qualification?
 - To which conditions?
SSCs during a SA

• **Question?** which SSCs are being used in the course of SAs? For:
 • Unmitigated SAs vs.
 • SAs with SAM application

• **Answer!** determined by the SA evolution
 • A bunch of scenarios must be analyzed

• **SSCs used in the course of SAs:**
 1. *Systems for physical parameters/plant state measurement*
 2. *Components for SA mitigation*
 • Primary circuit (PC) depressurization measures
 • Systems for in-core coolant injection
 • Passive autocatalytic recombiners (PARs)
 • Core-catcher
 • Valves
 • Mobile devices
1. **Systems for physical parameters/plant state measurement**
 - Core exit temperature (CET) – used for determination of the entrance into SA management guidelines (SAMGs)
 - Low range; will be destroyed after core degradation onset; no qualification
 - PC loops temperatures – used for determination of the entrance into SAMGs
 - Low range; will be destroyed after core degradation onset; no qualification
 - Liquid level in spent fuel pool (SFP), steam generators (SGs), CTMT – sump
 - Possibility of clogging ⇒ measurement devices need to be qualified
 - Pressure in the CTMT – qualified for DBCs, wider range in SAs
 - H₂ concentration in CTMT – qualified for DBCs, wider range in SAs; low O₂ conc.!!!
 - Dose rate in CTMT
 - Data acquired during normal operation, in SAs used alternatively if CET unavailable
 - Qualification to higher ranges of dose rates (to capture EOPs ⇒ SAMGs)
 - Radioactivity (RA) release into environment
 - Outside CTMT; no qualification
 - Generally: qualification needed for cables and those devices which help to identify whether a certain system’s operation is hampered by clogging
2. **Components for SA mitigation**
 - PC depressurization – PORV, SRV
 - Periodical operation, very hot gases carrying aerosols
 - Systems for in-core coolant injection
 - Localized outside the CTMT, however, water intake from the sump ⇒ liquid is likely to contain much aerosols
 - PARs
 - Designed for SAs
 - Core-catcher
 - Designed for SAs
 - Valves
 - Steam dump to atmosphere valve
 - Mobile devices
 - Located outside the CTMT

- Generally: qualification needed in order to be able to carry out the required functions during SAs
Codes for SA analyses

- Integral codes
 - IE \Rightarrow SA progression \Rightarrow FPs release into environment (source term; ST)
 - “Lumped parameter” approach
 - FPs behavior (release from fuel \Rightarrow transport in circuits \Rightarrow behavior in CTMT \Rightarrow ST)
 - FPs grouping into “classes”
 - Similar chemical behavior

- Main integral codes:
 - MELCOR
 - Sandia National Laboratories
 - for US Nuclear Regulatory Commission
 - ASTEC
 - IRSN+GRS
 - MAAP5
 - for EPRI
 - SOCRAT
 - IBRAE

<table>
<thead>
<tr>
<th>Class</th>
<th>Class Name</th>
<th>Chemical Group</th>
<th>Representative</th>
<th>Member Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XE</td>
<td>Noble Gas</td>
<td>Xe</td>
<td>He, Ne, Ar, Kr, Xe, Rn, H, N</td>
</tr>
<tr>
<td>2</td>
<td>CS</td>
<td>Alkali Metals</td>
<td>Cs</td>
<td>Li, Na, K, Rb, Cs, Fr, Cu</td>
</tr>
<tr>
<td>3</td>
<td>BA</td>
<td>Alkaline Earths</td>
<td>Ba</td>
<td>Be, Mg, Ca, Sr, Ba, Ra, Es, Fm</td>
</tr>
<tr>
<td>4</td>
<td>I2</td>
<td>Halogens</td>
<td>I$_2$</td>
<td>F, Cl, Br, I, At</td>
</tr>
<tr>
<td>5</td>
<td>TE</td>
<td>Chalcogens</td>
<td>Te</td>
<td>O, S, Se, Te, Po</td>
</tr>
<tr>
<td>6</td>
<td>RU</td>
<td>Platinoids</td>
<td>Ru</td>
<td>Ru, Rh, Pd, Re, Os, Ir, Pt, Au, Ni</td>
</tr>
<tr>
<td>7</td>
<td>MO</td>
<td>Early Transition Elements</td>
<td>Mo</td>
<td>V, Cr, Fe, Co, Mn, Nb, Mo, Tc, Ta, W</td>
</tr>
<tr>
<td>8</td>
<td>CE</td>
<td>Tetravalent</td>
<td>Ce</td>
<td>Ti, Zr, Hf, Ce, Th, Pa, Np, Pu, C</td>
</tr>
<tr>
<td>9</td>
<td>LA</td>
<td>Trivalents</td>
<td>La</td>
<td>Al, Sc, Y, La, Ac, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Am, Cm, Bk, Cf</td>
</tr>
<tr>
<td>10</td>
<td>UO2</td>
<td>Uranium</td>
<td>UO$_2$</td>
<td>U</td>
</tr>
<tr>
<td>11</td>
<td>CD</td>
<td>More Volatile Main Group</td>
<td>Cd</td>
<td>Cd, Hg, Zn, As, Sb, Pb, Tl, Bi</td>
</tr>
<tr>
<td>12</td>
<td>AG</td>
<td>Less Volatile Main Group</td>
<td>Ag</td>
<td>Ga, Ge, In, Sn, Ag</td>
</tr>
<tr>
<td>13</td>
<td>BO2</td>
<td>Boron</td>
<td>BO$_2$</td>
<td>B, Si, P</td>
</tr>
<tr>
<td>16</td>
<td>CSI</td>
<td>Cesium iodide</td>
<td>CsI</td>
<td>CsI</td>
</tr>
<tr>
<td>17</td>
<td>CSM</td>
<td>Cesium Molybdate</td>
<td>CsM1</td>
<td>CsM1</td>
</tr>
</tbody>
</table>
Codes for SA analyses

- Main output variables from SA computational analyses in relation with EQ – temporal evolution of:
 - p in CTMT
 - T in CTMT
 - Gas composition entering the CTMT or environment
 - Humidity in the CTMT
 - Surface T of solid structures
 - Occurrence of deflagrations
 - FPs distribution

- Still missing as an outcome from integral SA analyses:
 - Dose rates acting on SSCs
 - Recent analyses at UJV Rez:
 - MELCOR analysis \Rightarrow FPs distribution in the reactor hall of VVER-1000 reactor
 CTMT \Rightarrow MCNP5 evaluation of dose rate at 2 spots (RA measurement probes)
 - for a SA in open reactor & SFP (no CET measurement): EOPs \Rightarrow SAMGs
 - MELCOR analysis \Rightarrow FPs distribution in the reactor hall of VVER-1000 reactor
 CTMT \Rightarrow MAVRIC/ORIGEN-S evaluation
Assessment of outcomes of SA analyses

- Typical temporal evolution of crucial parameters for an unmitigated SA – example:
 - VVER-1000/320 (Temelin NPP)
 - IE: large break LOCA + SBO
 - CTMT failure by over-pressurization not considered
 - MCCI ongoing
 - PARs taken into account
Assessment of outcomes of SA analyses

- CTMT pressure

![Chart showing over-pressure vs time](chart.png)
Assessment of outcomes of SA analyses

- CTMT atmosphere temperature, dew point temperature
Assessment of outcomes of SA analyses

- Concentration of steam, H₂, O₂ and N₂ in the CTMT atmosphere
Assessment of outcomes of SA analyses

- Relative humidity in the CTMT atmosphere

![Graph showing relative humidity over time](image-url)
Assessment of outcomes of SA analyses

- Surface temperature of a solid structure in the reactor hall

![Temperature vs. Time Graph](image-url)
Equipment qualification for SAs

- 2014: project for EQ for both Czech NPPs
 - 4x VVER-440/213 – Dukovany NPP
 - 2x VVER-1000/320 – Temelin NPP
- Identified were:
 - Equipment to be qualified
 - Relevant SA scenarios
 - Readings of maxima of decisive parameters, such as:
 - Atmosphere & component surface temperature
 - Pressure
 - Humidity
 - Water level
 - Hydrogen deflagration identification
 - RNs distribution (vapors, aerosols and gases)
 - in the air
 - in sumps and
 - settled on structures
- For SAs, crucial is the dose rate evaluation
 - up to several days of duration
 - new methodology under development, using the code SCALE/MAVRIC seq.
Thank You for Your Attention!